

Figure 1. Room-temperature F^{19} spectra of $\mathrm{mF}_{3}(\mathrm{a})$ and $\mathrm{pF}_{3}(\mathrm{~b})$.

Figure 2. Low-temperature decoupled F^{19} spectra of $\mathrm{mF}_{3}(\mathrm{a})$ and mF_{2} (b).

We may then assign the low-field line of the mF_{3} doublet to fluorines e^{\prime} and $\mathrm{e}^{\prime \prime}$ and the high-field line to fluorines d and $e^{\prime \prime \prime}$. We may assign line a_{1} of the fourline mF_{2} spectrum to fluorine $\mathrm{a}, \mathrm{a}_{2}$ and a_{3} to fluorines c^{\prime} and $c^{\prime \prime}$, and a_{4} to fluorine b.

For either conformation II or III above, the presence of more nonequivalent fluorines than appear to be present would be required; furthermore, the mF_{1} and pF_{3} species would be expected to show nonequivalent fluorines. In addition, the temperature variation of the decoupled mF_{2} and mF_{3} spectra may be quantitatively explained on the basis of the propeller conformation and the spectral assignments given above. ${ }^{1}$

The chemical shifts of the F^{19} lines at room temperature are given in Table I. An interpretation of these shifts and analyses of the proton n.m.r. spectra of these ions will be published.

[^0]Table I. Room Temperature F 19 Chemical Shifts

Ion	Chemical shift, p.p.m. ${ }^{a}$	Ion	Chemical shift, p.p.m. ${ }^{a}$
pF_{1}	8.72	mF_{1}	34.7
pF_{2}	9.24	mF_{2}	34.0
pF_{3}	9.77	mF_{3}	33.3

${ }^{a}$ Relative to trifluoroacetic acid internal standard.

Acknowledgment. We wish to thank the National Science Foundation for financial support and Drs. Axsel A. Bothner-By and John A. Pople for stimulating discussions.

Allan K. Colter, Ingeborg I. Schuster, Robert J. Kurland
Department of Chemistry, Carnegie Institute of Technology Pittsburgh, Pennsylvania 15213

Received February 24, 1965

Fluorine Magnetic Resonance Studies of Conformational Interconversion Rates in Triphenylcarbonium Ions

Sir:
The temperature variation of the decoupled F^{19} n.m.r. spectra of $3,3^{\prime}$-difluoro- and $3,3^{\prime}, 3^{\prime \prime}$-trifluorotriphenylcarbonium ions (mF_{2} and mF_{3}, respectively) has been used to obtain interconversion rates between the conformers discussed in the preceding communication. ${ }^{1}$

At about -30° the single line of the decoupled mF_{3} spectrum broadens, splitting into two lines of equal intensity as the temperature is lowered; this doublet separation increases to a limiting value of 11.4 c.p.s. as the temperature is lowered to -51°, remaining unchanged down to -80° (Figure 1). The mF_{2} line

Figure 1. Decoupled F^{19} spectrum of mF_{3} at (a) -31.0°, (b) -37.7°.
broadens at about -38°, splitting into a doublet of $3: 1$ intensity ratio; the separation of these lines increases as the temperature is lowered, the larger of these lines (a in Figure 2a) splitting into two lines of intensity ratio $2: 1$ at -57° (Figure 2b). The stronger of these two lines (aa_{1} in Figure 2b) splits into a barely resolved doublet at -59° (Figure 2c); this four-line pattern remains unchanged down to -80°.
(1) A. K. Colter, I. I. Schuster, and R. J. Kurland, J. Am. Chem. Soc., 87, 2278 (1965).

Figure 2. Decoupled F^{19} spectrum of mF_{2} at (a) -42.8°, (b) -57.1°, (c) -59.0°.

Figure 3. Plot of $-\log \tau_{\mathrm{de}} v s .1 / T$ for mF_{3}.

Interconversion between the conformers pictured in ref. 1 (A, B, and C of $\mathrm{mF}_{2}, \mathrm{D}$ and E of mF_{3}) can occur when one or more rings "flip," i.e., rotate about the

$$
\begin{gather*}
\tau_{\mathrm{ac}^{\prime}}=\tau_{\mathrm{c}^{\prime} \mathrm{a}}=\tau_{\mathrm{ac}{ }^{\prime \prime}}=\tau_{\mathrm{c}^{\prime \prime} \mathrm{a}}=\tau_{\mathrm{bc}^{\prime}}=\tau_{\mathrm{c}^{\prime} \mathrm{b}}= \\
\tau_{\mathrm{bc}^{\prime \prime}}=\tau_{\mathrm{c}^{\prime \prime \mathrm{b}}}=1 /\left(k_{1}+k_{2}\right) \tag{la}\\
\tau_{\mathrm{ab}}=\tau_{\mathrm{ba}}=\tau_{\mathrm{c}^{\prime} \mathrm{c}^{\prime \prime}}=\tau_{\mathrm{c}^{\prime \prime} \mathrm{c}^{\prime}}=1 /\left(k_{2}+k_{3}\right) \tag{lb}\\
\tau_{\mathrm{de}^{\prime}}=\tau_{\mathrm{e}^{\prime} \mathrm{d}}=\tau_{\mathrm{de}^{\prime \prime}}=\tau_{\mathrm{e}^{\prime \prime \mathrm{d}}}=\tau_{\mathrm{dc}^{\prime \prime \prime}}=\tau_{\mathrm{c}^{\prime \prime \prime} \mathrm{d}}= \\
\tau_{\mathrm{e}^{\prime} \mathrm{c}^{\prime \prime}}=\tau_{\mathrm{e}^{\prime \prime} \mathrm{e}^{\prime}}=\tau_{\mathrm{e}^{\prime} \mathrm{e}^{\prime \prime \prime}}=\tau_{\mathrm{e}^{\prime \prime \prime} \mathrm{e}^{\prime}}=1 /\left(k_{1}+k_{2}\right) \tag{1c}\\
\tau_{\mathrm{e}^{\prime \prime} \mathrm{e}^{\prime \prime \prime}}=\tau_{\mathrm{e}^{\prime \prime \prime} \mathrm{e}^{\prime \prime}}=1 /\left(k_{2}+k_{3}\right) \tag{ld}
\end{gather*}
$$

bond to the central carbon, passing through a plane perpendicular to that formed by the three central carbonphenyl bonds. In order to retain the required propeller conformation, the rings which do not flip must necessarily invert (more or less simultaneously) by passing through the plane of the central carbon-phenyl bonds. Denoting by k_{1}, k_{2}, and k_{3} the probabilities per unit time per molecule that one, two, or three rings, respec-

Figure 4. Plot of $\log k$ vs. calculated peak positions for F_{2}, Experimental points shown by circles.

Figure 5. Plot of $\log k v s .1 / T$ for mF_{2}.
tively, flip, the following expressions for τ_{ij}, the mean lifetime a fluorine spends at a site i before jumping to site j , can be derived.

The designation of nonequivalent fluorines in eq. 1 is that given in ref. 1. It has also been assumed that k_{1}, k_{2}, and k_{3} are the same for all conformers and are the same for substituted and unsubstituted rings.

If, as suggested, ${ }^{1}$ fluorines d and $\mathrm{e}^{\prime \prime \prime}$ in mF_{3} are effectively equivalent, as are e^{\prime} and $\mathrm{e}^{\prime \prime}$, then the mean lifetime $\tau_{\text {de }}$ is given by

$$
\begin{equation*}
1 / \tau_{\overline{\mathrm{d}} \cdot}^{\mathrm{e}}=1 / \tau_{-\overline{\mathrm{e}}}=1.5 k_{1}+2 k_{2}+0.5 k_{3} \tag{2}
\end{equation*}
$$

where \bar{d} denotes the equivalent pair d and $\mathrm{e}^{\prime \prime \prime}$ and $\overline{\mathrm{e}}$ denotes the equivalent fluorines e^{\prime} and $\mathrm{e}^{\prime \prime}$.

The line shape behavior for exchange between several sites can be analyzed by means of modified Bloch equations. ${ }^{2}$ For the case where fluorine pairs $\mathrm{d}, \mathrm{e}^{\prime \prime \prime}$ and $\mathrm{e}^{\prime}, \mathrm{e}^{\prime \prime}$ of mF_{3} are treated as equivalent, one may obtain an explicit formula for the over-all rate constant, $1 / \tau_{\text {de }}$, formally similar to that for exchange between two sites. ${ }^{3,4}$

[^1]A plot of $\log \tau_{\dot{d e}} v s .1 / T\left({ }^{\circ} \mathrm{K}\right.$.) is shown in Figure 3; the slope of the best fit straight line through the experimental points leads to an activation energy of 9.1 kcal . mole ${ }^{-1}$ for the interconversion.

The more complicated line shape formula derived for mF_{2} is a function of the two rate parameters k and β, defined as

$$
\begin{gather*}
k=k_{1}+k_{2} \tag{3a}\\
\beta=\left(k_{2}+k_{3}\right) /\left(k_{1}+k_{2}\right) \tag{3b}
\end{gather*}
$$

The parameter β is assumed to be approximately constant over the temperature range of interest.

A computer program was used to construct plots of $\log k v s$. the calculated peak positions for given values of β. By interpolation, these plots yielded values of k corresponding to the temperatures of the observed peak positions (Figure 4). Values of β ranging from 6 to 20 gave essentially linear plots of $\log k$ vs. $1 / T$ (Figure 5) corresponding to activation energies ${ }^{5}$ from 9.4 to 9.6 kcal. mole ${ }^{-1}$.

From eq. 2, 3a, and 3 b it is possible to show that the relation

$$
\begin{equation*}
1 /(k \tau \dot{\mathrm{~d}} \mathrm{e})=0.5(3+\beta) \tag{4}
\end{equation*}
$$

should hold if, indeed, k_{1}, k_{2}, and k_{3} are the same for mF_{2} and mF_{3}. For $\beta=10,1 /\left(k \tau_{\dot{\mathrm{de}}}\right)=5.0$ (at a common temperature), whereas from eq. $41 /\left(k \tau_{\dot{\mathrm{de}}}\right)$ should equal 6.5. However, the analysis is sufficiently insensitive to the value of β chosen that we consider the identity of k_{1}, k_{2}, and k_{3} for mF_{2} and mF_{3} to have been demonstrated. Further, the correctness of the model conformations and interconversion scheme is supported by the identity of the derived activation energies for mF_{2} and mF_{3}. The large value of $\beta(6$ to 20$)$ indicates that the three-ring flip probability, k_{3}, is much larger than k_{1} or k_{2}. A detailed report of this work will be published, along with an analysis of the proton n.m.r. spectra of these compounds.

Acknowledgment. We wish to thank the National Science Foundation for financial support.
(4) The more general formula for the line shape of mF_{3} obtained under the assumption that the chemical shifts between d and $\mathrm{e}^{\prime \prime \prime}$ and between e^{\prime} and $\mathrm{e}^{\prime \prime}$ are 0.4 c.p.s. yields similar results.
(5) Calculated energies of activation are considered accurate to about $\pm 0.5 \mathrm{kcal} . \mathrm{mole}^{-1}$.

Robert J. Kurland, Ingeborg I. Schuster, Allan K. Colter Department of Chemistry, Carnegie Institute of Technology Pittsburgh, Pennsylvania 15213

Received February 24, 1965

Thermal Rearrangement of Cyclopropyl Ketones to Homoallylic Ketones. Relationship to the "Abnormal Claisen Rearrangement"

Sir:
The "abnormal Claisen rearrangement" ${ }^{1}$ has now been quite clearly identified as the result of two consecutive processes: the normal ortho Claisen rearrangement of a γ-alkylallyl phenyl ether to an 0 -(α-alkylallyl)phenol, followed by an isomerization of the side chain of this phenol. ${ }^{2}$ The mechanism of the secondary

[^2]isomerization has been formulated as involving a cyclopropyldienone intermediate. ${ }^{2,3}$ Assuming this mechanism is correct, we anticipate that such a mechanism may not be restricted to phenols but may represent quite a general, and so far unnoticed, type of intramolecular rearrangement.

In simplest form, it may be outlined as the conversion of one homoallylic carbonyl compound (I) to another (V) via the allylic enols II and IV and the cyclopropyl

carbonyl compound III. We now wish to report the thermal rearrangement of two cyclopropyl ketones to homoallylic ketones (e.g., III \rightarrow I) and, in the following communication, ${ }^{4}$ we supply evidence for the whole reversible sequence $\mathrm{I} \rightleftarrows \mathrm{V} .{ }^{5}$

1-Acetyl-2,2-dimethylcyclopropane (VI, R $=\mathrm{Me}$) smoothly rearranged to (β-methylallyl)acetone (VII, $\mathrm{R}=\mathrm{Me}$) at temperatures above 150°. First-order rate constants of $3.86 \times 10^{-5} \mathrm{sec} .^{-1}\left(152^{\circ}\right)$ and $9.00 \times$

$10^{-5} \mathrm{sec} .^{-1}\left(163^{\circ}\right)$ and an activation energy of 33 kcal ./ mole were calculated. The reaction mixtures were analyzed by vapor phase chromatography, and (β methylallyl)acetone was found to be the only product that developed. A sample of the product was isolated from a rearrangement mixture by preparative scale v.p.c. and identified through its semicarbazone (m.p.

[^3]
[^0]: and to fluorines d and $\mathrm{e}^{\prime \prime \prime}$ should be approximately the same, viz., zero. This effect should be much larger (but nearly the same) for fluorines $\mathrm{a}, \mathrm{e}^{\prime}$, and $\mathrm{e}^{\prime \prime}$, since the pairs of fluorines involved are near neighbors. The second effect is that produced by the ring current of the adjacent phenyl rings. The principal ring current effect will be that of the closer of the two rings to the fluorine in question (e.g., for fluorine b the unsubstituted ring) and will depend slightly on whether the ring is substituted or not. Thus, this effect should give a different contribution to the shieldings of fluorines c^{\prime} and $c^{\prime \prime}$ while it would give essentially the same contribution to fluorines $d, e^{\prime}, e^{\prime \prime}$, and $e^{\prime \prime \prime}$.

[^1]: (2) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High-Resolution Nuclear Magnetic Resonance," McGraw-Hill Book Co., New York, N. Y., 1959, p. 224.
 (3) Reference 2, eq. 10-31, p. 224.

[^2]: (1) W. M. Lauer and W. F. Filbert, J. Am. Chem. Soc., 58, 1388 (1936), and later papers.
 (2) E. N. Marvell, D. R. Anderson, and J. Ong, J. Org. Chem., 27, 1109 (1962).

[^3]: (3) A. Habich, R. Barner, R. M. Roberts, and H. Schmid, Helv. Chim. Acta, 45, 1943 (1962).
 (4) R. M. Roberts, R. N. Greene, R. G. Landolt, and E. W. Heyer, J. Am. Chem. Soc., 87, 2282 (1965).
 (5) D. E. McGreer, N. W. K. Chiu, and R. S. McDaniel [Proc. Chem. Soc., 415 (1964)] recently observed thermal isomerizations of several esters, which they explained in terms of the mechanism represented by the sequence III $\rightarrow \mathrm{I}$, where $\mathrm{A}=\mathrm{OCH}_{3}$. R. J. Ellis and H. M. Frey [ibid., 221 (1964)] described a similar rearrangement of cis-1-methyl-2vinylcyclopropane. None of these compounds was structurally capable of showing rearrangement of the type $\mathrm{I} \rightarrow \mathrm{V}$.

